
LETTER Communicated by Michael Berry

Estimating the Entropy Rate of Spike Trains via Lempel-Ziv
Complexity

José M. Amigó
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Normalized Lempel-Ziv complexity, which measures the generation rate
of new patterns along a digital sequence, is closely related to such impor-
tant source properties as entropy and compression ratio, but, in contrast
to these, it is a property of individual sequences. In this article, we pro-
pose to exploit this concept to estimate (or, at least, to bound from below)
the entropy of neural discharges (spike trains). The main advantages of
this method include fast convergence of the estimator (as supported by
numerical simulation) and the fact that there is no need to know the prob-
ability law of the process generating the signal. Furthermore, we present
numerical and experimental comparisons of the new method against the
standard method based on word frequencies, providing evidence that this
new approach is an alternative entropy estimator for binned spike trains.

1 Introduction

Neurons respond to external or internal stimuli by �ring sequences of dis-
crete, identical action potentials called spike trains (see Figure 1). It is still
an open question whether the information about the stimuli is carried by
the spike timing, spike patterns, number of spikes, or a different mecha-

Neural Computation 16, 717–736 (2004) c° 2004 Massachusetts Institute of Technology
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Figure 1: Binary representation of a typical spike train with a given time preci-
sion 1¿: By dividing the time axis into discrete bins, a spike train (represented
here as a sequence of impulses) can be represented as a sequence of binary digits,
where 1 denotes at least one spike in the given bin and 0 denotes no spike.

nism (perhaps including some of the previous ones), but independent of
whatever the answer might be, the average amount of information a neu-
ron is transmitting about the stimuli is quantitatively measured in bits per
symbol or bits per second by the mutual information, which is obtained by
subtracting the noise entropy rate (due to the variability of the responses
to a �xed stimulus) from the (Shannon) entropy rate of the entire response
ensemble. (See Shannon, 1948; Cover & Thomas, 1991, for the general the-
ory of information and Rieke, Warland, de Ruyter van Steveninck, & Bialek,
1998; Borst and Theunissen, 1999; Paninski, 2003 for more elaborated and
practical discussions in relation to computational neuroscience.)

In this article,we explorethe applicationof Lempel-Zivcomplexity (Lem-
pel & Ziv, 1976) to the measurement of the entropy rate of neurological
signals (not to be mistaken for the complexity measure of the same name
used for data compression, which was proposed later) and compare both
the numerical and experimental results to those obtained with the by now
classic technique of Strong, Koberle, de Ruyter van Steveninck, and Bialek
(1998). The comparison turns out to be very satisfactory: the complexity-



Estimating the Entropy Rate of Spike Trains 719

based approach performs better for short sequences, for which undersam-
pling becomes critical. We also address the question of the convergence of
the normalized Lempel-Ziv complexity to the entropy rate. The application
of Lempel-Ziv complexity to the estimation of mutual information will be
studied in a forthcoming article.

2 Signal Codi�cation and Entropy

Before applying the concepts and methods of discrete information theory
to a spike train, this has to be transformed into a digital signal or “word,”
in the parlance of information theory—a sequence of �nitely many symbols
or “letters.” The transformation of a spike train into a word is called the
codi�cation of the signal and the procedure, the (en)coding. Codi�cation can
be carried out in a variety of ways. Hereafter we will consider only the
temporal or binary time bin coding (see Figure 1), which is the most popular
encoding sinceMacKay and McCulloch (1952) used it in their seminal article.
Let the �rst spike of a train under observation occur at time t0 and the last
one at t0 C T. The time interval [t0; t0 C T] is then split into n bins [ti¡1; ti]
.1 · i · n; with tn D t0 CT/ of the same length 1¿ D T=n: If each bin is now
coded by 0 or 1 according to whether it contains no spikes (0) or at least one
spike (1), the result is a binary message or word of length n: The bin length
1¿ can be interpreted as the time resolution with which the spike train is
being observed.

Once a spike train has been codi�ed into a message, this can be viewed as
emitted by an information source S that we call, for obvious reasons, a neu-
ronal source (Amigó, Szczepánski, Wajnryb, & Sanchez-Vives, 2003). In order
to calculate the entropy (or, rather, the entropy rate) of S; we follow Strong
et al. (1998) and Reinagel and Reid (2000). First, a representative ensemble
of neuronal responses to a given group of stimuli is recorded. Second, one
examines segments of the resulting binned spike trains in (overlapping)
windows of duration L · T; each segment becoming after codi�cation a
binary word of length l D L=1¿ . Let Qpi be the normalized count of the ith
word in the ensemble of words of length l in a set of observations. Then,
the corresponding estimate of the neuronal source entropy rate (in bits per
second) is

H.l; 1¿/ D ¡ 1
l1¿

X
Qpi log2 Qpi; (2.1)

where the sum is over all the words of length l: Asmade clear by the notation,
such an estimate depends on both l and the time resolution 1¿ . The true
entropy rate H.S/ is reached in the limit of vanishing time bins and in�nitely
long words; mathematically

H.S/ D lim
1¿!0; l!1

H.l; 1¿/:
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We want to stress again that the entropy is a property of sources and
therefore dif�cult to evaluate (Strong et al., 1998). In fact, the knowledge of
the probability distribution involved in its calculation requires, in principle,
an extensive sampling that usually cannot be performed, not to mention
the reproducibility of the test conditions. In contrast, the complexity as
originally formulated by Lempel and Ziv (1976) is a property of individual
sequences that can be used to estimate the entropy or, more generally, to
bound it from below. We will sometimes call this concept LZ-76 complexity
to distinguish it from LZ-78 complexity, a different de�nition of complexity
also due to Lempel and Ziv (Ziv & Lempel, 1978), which is the basis of
typical lossless compression algorithms (e.g., WinZip) in common use in
modern computing and other information technologies. Unless otherwise
stated, we henceforth refer always to the LZ-76 complexity.

3 Lempel-Ziv Complexity

We de�ne Lempel-Ziv complexity recursively. Given the word xn
1 :D x1x2;

: : : ; xn of length n (xi 2 f0; 1g; 1 · i · n), a block of length l .1 · l · n/

is just a segment of xn
1 of length l; that is, a subsequence of l consecutive

letters; say xiCl
iC1 :D xiC1xiC2; : : : ; xiCl .0 · i · n ¡ l/: In particular, letters are

blocks of length 1, and blocks of higher length are obtained by juxtaposition
of blocks of lower length. Set B1 D x1

1 D x1, and suppose that

B1B2; : : : ; Bk D xnk
1 ;

where B1B2; : : : ; Bk denotes the juxtaposition of the blocks B1; B2 D xn2
2 ;

; : : : ; ; Bk D xnk
nk¡1C1 and nk¡1 C 1 · nk < n (with n0 D 0 and n1 D 1/: De�ne

BkC1 :D xnkC1
nkC1 .nk C 1 · nkC1 · n/

to be the block of minimal length such that it does not occur in the sequence
xnkC1¡1

1 : Proceeding in this way, we obtain a decomposition of xn
1 in “mini-

mal” blocks, say,

xn
1 D B1B2; : : : ; Bp (3.1)

in whichonly the last blockBp can occasionally appear twice. The complexity
C.xn

1/ of xn
1 is then de�ned as the number of blocks in the (clearly unique)

decomposition 3.1:

C.xn
1/ :D p:

The procedure is illustrated by the following example. The decomposition
of the binary word x19

1 D 01011010001101110010 into minimal blocks of new
patterns is

0j 1j 011j 0100j 011011j 1001j 0;
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where the vertical lines separate the blocks. Therefore, the complexity of x19
1

is 7.
Let us mention in passing that to de�ne LZ-78 complexity, one compares

the current block xnkC1; : : : ; xnkClk , lk D 1; 2; : : : ; with the previous minimal
blocks B1; : : : ; Bk (instead of looking for the same pattern in the whole seg-
ment x1; : : : ; xnkClk¡1, as in LZ-76) and sets BkC1 D xnkClk

nkC1 as soon as it differs
from all of them. For the word x19

1 of the example above, one now gets the
block decomposition 0j 1j 01j 10j 100j 011j 0111j 00j 10, and hence its LZ-78
complexity is 9.

The generation rate of new patterns along xn
1 ; a binary word of length n,

is measured by the normalized complexity c.xn
1/; which is de�ned by

c.xn
1/ D

C.xn
1/

n= log2 n
D p

n
log2 n:

Sequences that are not complex (e.g., periodic or quasi-periodic) have a
very small normalized complexity. At the opposite end are the random
sequences. Although the normalized complexitycan take values higher than
1; the normalized complexity of sequences generated by random sources is
about 1 with very high probability.

4 Relation Between Entropy and LZ-76 Complexity

To state the relation between the normalized complexity c.xn
1; 1¿/ of a

binned spike train xn
1 and the entropy rate per second,

H.1¿ / :D lim
l!1

H.l; 1¿/ D ¡ lim
l!1

1
l1¿

X
Qpi log2 Qpi (4.1)

of the neuronal source S, which has produced the binned spike train xn
1 ; we

still need two de�nitions. S is said to be stationary if the probability of any
block xiCl¡1

i of length l ¸ 1 does not depend on its position i ¸ 1; which
means that the statistical properties of the (in principle, arbitrarily long)
words generated by S do not change with time. In general, the entropy fails
to exist for nonstationary sources. A stationary source is called ergodic if
ensemble averages and time averages coincide almost surely, that is, one
can calculate expected values over the word ensemble using the relative
frequencies of suf�ciently long substrings from a typical word. Hence, er-
godicity can be tested in practical cases by sampling typical words; every
such word should produce (about) the same averages. As a rule, ergodic-
ity is often encountered in nature for stationary processes. Maybe for this
reason, ergodicity is, in general, tacitly assumed—always when entropy is
estimated using word relative frequencies from a single sequence without
further justi�cation.
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It can be proved (Ziv, 1978) that if S is stationary, then

lim sup
n!1

c.xn
1; 1¿/

1¿
· H.1¿ / on average; (4.2)

and, moreover, if S is ergodic, then

lim sup
n!1

c.xn
1; 1¿/

1¿
D H.1¿ / almost surely. (4.3)

Therefore, equations 4.2 and 4.3 provideways to bound from below and esti-
mate, respectively, the entropy of a neuronal source (with the corresponding
properties) via the Lempel-Ziv complexity of a sample of spike trains and
a typical (i.e., randomly chosen) spike train produced by it.

Both equations 4.1 and 4.3 involve limits to in�nity and hence are dif�cult
to implement in practice in order to estimate H.1¿ /, “l; n ! 1” meaning
that l, n are to be taken as large as possible. But the nature of the dif�culty
is different. Whereas large l in H.l; 1¿/ leads inevitably to undersampling
of the words of length l requiring some extrapolation technique to be put in
place (see section 5), large n or even small n in c.xn

1; 1¿/=1¿ can lead to good
approximations of H.1¿ / if the convergence in equation 4.3 is suf�ciently
fast. This basic difference hints at the possibility, substantiated by numer-
ical evidence with short sequences, that the entropy rate can be estimated
by means of the normalized complexity in situations where the standard
estimator performs poorly.

5 Undersampling and Stationarity

When estimating the entropy rate of experimental time series, two main
dif�culties arise (independent of the method used), which have to do with
the �niteness of the real signals and their stationarity.

First, the de�nition of H.1¿ /, (see equation 4.1) requires words of in-
creasing length l, whereas real spike trains are necessarily �nite. Now, in-
creasing l when counting different words out of spike trains of �nite length
depletes the word statistics and therefore renders the estimations of the
relative frequencies Qpi of the words of length l less and less reliable. Also
as a result of this statistical depletion (or undersampling), H.l; 1¿/ gets
arti�cially smaller than H.1¿/ for suf�ciently large l, while H.1; 1¿/ ¸
H.2; 1¿/ ¸ ¢ ¢ ¢ ¸ H.1¿ / should hold.

Furthermore, stationarity is an assumption that cannot be taken for
granted in biological systems because of phenomena such as adaptation
and synaptic plasticity, and should be checked on a case-by-case basis. Usu-
ally one assumes that “short” registers are suf�ciently stationary for practi-
cal purposes since the time variability of their statistical properties cannot
become important in the short term. In case of doubt, one should cut the
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experimental registers even shorter to ensure stationarity. But, again, this
assumption is at odds with the limit l ! 1 in equation 4.1.

Therefore, for one reason or the other, one usually faces in practice short
sequences when it comes to evaluating their entropy rate. The by now stan-
dard technique for so doing was proposed in Strong et al. (1998) and consists
of extrapolating the linear trend (if any) of the graph of H.l; 1¿/ versus 1= l
up to the vertical axis obtaining the intercept as H.1¿ /. As a real and prac-
tical alternative, we propose next a complexity-based approach to estimate
the entropy rate of binned spike trains.

Indeed, equation 4.3 provides a simple way to estimate the entropy of
an ergodic neuronal source via the normalized complexity rate of a typical
binned spike train xL

1 of total length L produced by it, namely,

c.xl
1; 1¿/

1¿
’ H.1¿ /;

for all l · L such that c.xl
1; 1¿/=1¿ has already converged to H.1¿ /. But as

already noted, while the performance of the classical entropy rate estimator
H.l; 1¿/ depends critically on the size of l as compared to L because of
undersampling, the applicability of the normalized complexity rate relies
rather on the convergence speed of c.xl

1; 1¿/ as l ! L, that is, as the pattern
count continues. If the convergence is fast, one can also assess the entropy
rate of short data series—too short forother methods to deliver. In particular,
one expects this to be the case when the source entropy is small (i.e., when
the source is far from random), because then the pattern count is low. This
is important because stationarity often demands experimental spike trains
to be short. Numerical simulations with two-state Markov processes give
support to our claim that the normalized complexity rate converges fast to
H.1¿ /. The next section is devoted to these simulations.

6 Numerical Simulations

The entropy estimation of signals of �nite and, especially, short length is a
challenging problem. In order to tackle this problem for the estimators in
which we are interested, the normalized Lempel-Ziv complexity and the
usual estimate based on the word relative frequencies (see equation 2.1), we
consider two-state (numbered 0 and 1) Markov processes in discrete time.
The conditional probabilities for such processes are completely de�ned in
terms of the transition probabilities from state 0 to state 1, p10; and from state
1 to state 0, p01. The whole Markov transition probability matrix PnC1;n.x j y/,
where x; y D 0; 1, is given by

PnC1;n.x j y/ D
³

1 ¡ p10 p01
p10 1 ¡ p01

´
: (6.1)
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The equation for the probability evolution (master equation) then reads

³
PnC1.0/

PnC1.1/

´
D

³
1 ¡ p10 p01

p10 1 ¡ p01

´ ³
Pn.0/

Pn.1/

´
; (6.2)

and it has the stationary solution

³
Peq.0/

Peq.1/

´
D

³
p01=.p01 C p10/

p10=.p01 C p10/

´
: (6.3)

The entropy rate H of such a process (or, equivalently, Markov source) gen-
erating an in�nite long binary sequence is given by Cover and Thomas
(1991):

H D Peq.0/.¡p10 log2 p10 ¡ .1 ¡ p10/ log2.1 ¡ p10//

C Peq.1/.¡p01 log2 p01 ¡ .1 ¡ p01/ log2.1 ¡ p01//: (6.4)

On the other hand, the entropy rate estimate obtained as in equation 2.1
from the statistics of l-bit long words in an in�nite long binary sequence
generated by a Markov source can be written as the convex sum

H.l/ D l ¡ 1
l

H C
1
l
Heq; (6.5)

(l D 1; 2; : : :), where H is the source entropy rate, equation 6.4, and

Heq D ¡Peq.0/ log2 Peq.0/ ¡ Peq.1/ log2 Peq.1/: (6.6)

Notice from equation 6.5 that H.l D 1/ D Heq,

lim
l!1

H.l/ D H (6.7)

(as it should by de�nition) and, in general, H · H.l/ · Heq.
In the particular case of a Markov source with

p01 C p10 D 1; (6.8)

both extremal values Heq and H coincide .D ¡p01 log2 p01 ¡p10 log2 p10/ and,
hence,

H D H.l/ D Heq (6.9)

for words of any length l. In particular, H D H.l D 1/; which shows that if
p01 C p10 D 1; one can estimate the entropy rate with arbitrary precision just
by sampling a suf�ciently large number of single bits. But this is rather an
exceptional situation.
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Figure 2: Convergence rate with increasing word length of the normalized
Lempel-Ziv complexity to the true entropy rate of the Markov source, which
has generated the sequence. Here, p10 D 0:1 and p01 D 0:8: The corresponding
curve for the normalized LZ-78 complexity is shown for comparison.

In general, p01 C p10 6D 1, and since H :D liml!1 H.l/, the reliable es-
timation of H through H.l/ requires a large sample of long words, while
experimental data series are usually too short to satisfy this need. More-
over, given a �nite binary sequence of length n; it can be shown that H.l/
decays as

Hasym.l/ D
log2.n ¡ l C 1/

l
(6.10)

for suf�ciently long words, so that liml!n H.l/ D liml!n Hasym.l/ D 0: This
is the undersampling scenario one faces in practice because of the �nite
length of real data series.

We present in Figures 2 through 6 the results of our numerical simu-
lations pertaining to the estimation of the entropy H via the normalized
Lempel-Ziv complexity and by direct sampling of word probabilities. We
have performed many such simulations, but only two representative cases
will be discussed here.

Speci�cally, Figures 2 and 3 exhibit the convergence rate of the normal-
ized Lempel-Ziv complexity to H for Markov sources with transition prob-
abilities p10 D 0:1, p01 D 0:8 in Figure 2 and p10 D p01 D 0:05 in Figure 3.
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Figure 3: Convergence rate with increasing word length of the normalized
Lempel-Ziv complexity to the true entropy rate of the Markov source that has
generated the sequence. Here, p10 D p10 D 0:05: The corresponding curve for
the normalized LZ-78 complexity is also shown for comparison.

The exact values of the entropy rate for these transition probabilities are,
according to equation 6.4, H D 0:497 and H D 0:286 bits per symbol, respec-
tively. We present also the corresponding curves of the normalized LZ-78
complexity to show that the former (LZ-76) converges much faster than the
latter.

Figures 4 and 5 compare both approaches for the extreme case of a binary
sequence of only 200 bits generated by two Markov processes with the
same transition probabilities as before. Whereas the standard method errs
from the exact values of the entropy rate by as much as 22% (the �rst case)
and 24% (the second case), the worst relative error of the complexity-based
estimation is only 8%. These and similar simulations support the utility of
the complexity-based estimations for short sequences.

Figure 6 shows that for sequences of 4000 bits, the standard estimator per-
forms�awlessly, as expected. The relative error is about 1% for both Markov
processes. The corresponding estimations from the normalized complexity
can be read in Figures 2 and 3, and the relative error is also 1%.

We conclude after the preceding benchmarking with two-state Markov
processes that the normalized complexity can be applied successfully in a
variety of situations, and its performance, at least in the controlled envi-
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Figure 4: A close-up of the LZ-76 complexity curves of Figures 2 and 3 in the
interval 50 · n · 200. It can be seen that the normalized complexity rate is
already close to the true entropy rate, the relative error being less than 14%
around n D 200 and 8% at n D 200 in either case.

Figure 5: The standard extrapolation technique applied to the same cases as in
Figure 4 (sequence length = 200 bits) misses the true entropy rate value by a
relative error of 22% (�rst Markov process) and 24% (second Markov process).
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Figure 6: The standard extrapolation technique applied to the same cases as in
Figures 2 and 3 (sequence length = 4000 bits). Now the relative error is about
1%, the same as if the entropy rate is read from the corresponding normalized
complexity rate curve in Figures 2 or 3.

ronment of numerical simulation, is at least as good as that of the standard
method. We turn next to the neural experimental data.

7 Experimental Work and Results

In this section, we continue the comparison of the two methods, this time
with experimental data. We have included for this purpose recordings of
different discharge patterns obtained both in vivo and in vitro and induced
by a variety of stimuli.

The experimental data were obtained from primary cortex recordings
both in vivo and in brain slice preparations (in vitro). Intracellular record-
ings in vivo were obtained from anesthetized adult cats (see Sanchez-Vives,
Nowak, & McCormick, 2000a, for details). For the preparation of slices, fer-
rets 2 to 4 months old of either sex were used (see Sanchez-Vives, Nowak,
& McCormick, 2000b, for details). Action potentials were detected with a
window discriminator, and the time of their occurrence was collected with
a 10 ¹sec resolution. The resulting time series were used to analyze the
neuronal spiking. Concerning the stimuli, they were of three kinds:
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1. Intracellular periodic current injection. Intracellular sinusoidal cur-
rents were injected in vivo. The frequency of the waveform was 2 Hz,
and the intensity ranged between 0:2 and 1:5 nA. The cell recorded
ensemble had 8 samples (spike train lengths between 15:56 sec and
47:64 sec).

2. Visual stimulation with sinusoidal drifting gratings. The visual stim-
ulus consisted of a sinusoidal drifting grating presented in a circular
patch of 3 to 5 degrees diameter, centered on the receptive �eld center
(in vivo). Only simple cells (classi�ed as in Skottun et al., 1991) were
included in this study. In this case, 8 samples were analyzed (spike
train lengths between 15:87 sec and 23:62 sec).

3. Intracellular random current injection. Random currents ranging be-
tween ¡=C 1:5 nA with different degrees of correlations were injected
during the intracellular recordings from cortical brain slices (in vitro).
The ensemble consisted of 20 samples (spike train lengths between
16:32 sec and 35:47 sec).

Figures 7 and 8 present the complexity rates c.xn
1 ; 1¿/=1¿ versus the

coding frequency 1=1¿ of a randomly chosen spike train xn
1 belonging, re-

Figure 7: Normalized complexity rate c.1¿/=1¿ versus coding frequency 1=1¿

for the two in vivo experimental cases considered in the text: intracellular peri-
odic current injection and visual stimulation with sinusoidal drifting gratings.
The values for 1=1¿ D 100; 200, and 300 Hz are presented in Tables 1 and 2. The
spike train is “typical” in the sense that it was chosen randomly.
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Figure 8: Normalized complexity rate c.1¿ /=1¿ versus coding frequency 1=1¿

for the two in vitro experimental cases considered in the text: intracellular ran-
dom current injection with stimuli whose autocorrelation functions decay fast
or slow. The spike trains are typical. The values for 1=1¿ D 100; 200, and 300
Hz are presented in Tables 3 and 4.

spectively, to the in vivo (periodic current injection and visual stimulation)
and in vitro (random current injection) experimental cases just explained.
Notice that we have further split the responses to random stimuli into two
subsets according to whether the autocorrelation function of the stimuli de-
cays slowly or fast. Only spike trains for which this distinction were clear
were considered foranalysis. Figures 9 to 12 show the graphs 1= l 7! H.l; 1¿/

with 1¿ D 0:01, 0:005, 0:0033 sec used to estimate the corresponding en-
tropy rate H.1¿/ by the standard technique of Strong et al. (1998) for the
same spike trains as before.

Tables 1 to 4 summarize the entropy rate estimations (in bits per sec-
ond) obtained by the standard and complexity-based methods applied to
the same spike train in each of the four previous experimental cases. The
complexity-based estimations are the readings for 1=1¿ D 100, 200, 300
Hz of the computer program that calculates the complexity curves in Fig-
ures 7 and 8. The values listed as standard estimations were numerically
extrapolated from the linear trends of the corresponding graphs, Figures 9
to 12.
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Figure 9: The standard estimate of the entropy rate in the in vivo periodic cur-
rent injection case for the corresponding spike train of Figure 7, obtained by
extrapolating the linear trend of H.l; 1¿/ versus 1=T (T D l1¿ , the window
length in time) to in�nitely long windows. The time bins were 1¿ D 0:01, 0:005,
and 0:0033 sec (coding frequency = 100, 200, and 300 Hz, respectively). The
corresponding estimations are presented in Table 1.

Table 1: H.1¿/ for Periodic Current Injection (in vivo).

Coding Frequency Standard Complexity

100 Hz 41.38 42.93
200 Hz 59.20 60.40
300 Hz 68.42 67.00

Table 2: H.1¿/ for Visual Stimulation.

Coding Frequency Standard Complexity

100 Hz 30.30 32.78
200 Hz 47.85 50.14
300 Hz 62.55 62.11
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Figure 10: The standard estimate of the entropy rate in the in vivo visual stim-
ulation with sinusoidal drifting gratings case for the corresponding spike train
of Figure 7. The time bins were 1¿ D 0:01; 0:005, and 0:0033 sec (coding fre-
quency = 100, 200, and 300 Hz, respectively). The corresponding estimations are
presented in Table 2.

Table 1 compares the entropy rate estimations obtained by the two meth-
ods for a typical neuron response to periodic current injection (in vivo). The
agreement is remarkable in this case. The relative deviation of the estima-
tions decreases from 8% for 1=1¿ D 100 Hz to below 1% for 1=1¿ D 300 Hz.

Analogously, Table 2 shows the estimations obtained by both methods
from a typical neuron response to visual stimulation with sinusoidal drifting
gratings. Here the relative deviation falls slightly from 3% for 1=1¿ D 100
Hz to 2% for 1=1¿ D 200 and 300 Hz.

Table 3 shows the results obtained for a spike train elicited by random
current injection (in vitro). Furthermore, the spike train belongs to the sam-
ples with a slowly decaying autocorrelation function. The relative deviation
of the estimations jumps from 2% for 1=1¿ D 100 and 200 Hz to roughly
5% for 1=1¿ D 300.

We �nish the comparison between the standard and the complexity-
based entropy rate estimators with Table 4, which summarizes the results
for a spike train with a fast-decaying autocorrelation function elicited by
random current injection. This is the case where the agreement is worse, the
relative deviation of estimations �uctuating around the 15% level.
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Figure 11: The standard estimate of the entropy rate in the in vitro random
current injection with slowly decaying autocorrelation function case for the
corresponding spike train of Figure 8. The time bins were 1¿ D 0:01; 0:005,
and 0:0033 sec (coding frequency = 100, 200, and 300 Hz, respectively). The
corresponding estimations are presented in Table 3.

Table 3: H.1¿/ for Random Current Injection (Slow Decay).

Coding Frequency Standard Complexity

100 Hz 52.38 53.38
200 Hz 68.69 67.23
300 Hz 78.00 74.70

Table 4: H.1¿/ for Random Current Injection (Fast Decay).

Coding Frequency Standard Complexity

100 Hz 22.31 19.00
200 Hz 27.75 24.39
300 Hz 31.05 26.03
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Figure 12: The standard estimate of the entropy rate in the in vitro random
current injection with fast-decaying autocorrelation function case for the corre-
sponding spike train of Figure 8. The time resolutions were 1¿ D 0:01; 0:005,
and 0:0033 sec (coding frequency = 100, 200, and 300 Hz, respectively). The
corresponding estimations are presented in Table 4.

Summing up, the results are very satisfactory in both in vivo cases and in
vitro random injection with a slowly decaying autocorrelation function. For
in vitro random injection with a fast-decaying autocorrelation function, we
�nd a 15% discrepancy, the normalized complexity rate lying always below
the standard entropy rate estimations. We conjecture that this discrepancy
is due to nonstationarity.

8 Conclusions

We propose the normalized Lempel-Ziv complexity (LZ-76 to be more pre-
cise) as a reliable estimator of the entropy of neuronal sources. The exact
relation between both concepts is given in equations 4.2 and 4.3. Our nu-
merical simulations with two-dimensional Markov processes with different
transition probabilities show that the normalized complexity converges fast
to the entropy; in section 6, we reported on two such simulations. A further
advantage of the complexity approach is that there is no need to know the
probability law of the process generating the signal since the normalized
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complexity is a property of individual sequences. More important, the nu-
merical evidence gathered over time with Markov processes and partially
reported in this article strengthens the validity of the complexity approach.
Indeed, the entropy rate estimations of arti�cial registers by means of the
complexity rate compare very favorably with those made with the extrap-
olation technique of Strong et al. (1998) and, moreover, outperforms this
latter method for some sequences too short for it to deliver an accurate es-
timation but long enough for the normalized complexity rate to be close to
the entropy rate. In sum, we conclude that Lempel-Ziv complexity certainly
belongs in the toolbox of computational neuroscience as a relevant measure
of entropy.
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